Nonclassical Eigenvalue Asymptotics *

نویسنده

  • BARRY SIMON
چکیده

1 he leading asymptotics for the growth of the number of eigenvalues of the two-dimensional Dirichlet Laplacian in the regions {(x, y)l 1x1 " / yl < 11 and for 4 + lxlD I yj4 all of which are non-Weyl because of infinite phase space volumes are computed. Along the way, a general inequality on quantum partition functions coriputed in a kind of Born-Oppenheimer approximation is proved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonclassical Eigenvalue Asymptotics for Operators of Schrödinger

which depends on the volume u)n of the unit sphere in R n and the beta function. Assuming /3 < 2 we see that integral (2) becomes divergent if V (x) vanishes to a sufficiently high order. The simplest such potential is V(x,y) = \x\\y\P o n R n + R m . The Weyl (volume counting) principle, when applied to the corresponding Schrödinger operator — A-hV(x), fails to predict discrete spectrum below ...

متن کامل

Eigenvalue Asymptotics of the Neumann Laplacian of Regions and Manifolds with Cusps

We study the eigenvalue asymptotics of a Neumann Laplacian-A$ in unbounded regions 0 of R2 with cusps at infinity (a typical example is a={(~, y)~R~:x>l, Iyl-ce-" I}) and prove that NE(A:)-NE(HY)+ E/2 Vol(Q), where HV is the canonical one-dimensional Schrodinger operator associated to the problem. We establish a similar formula for manifolds with cusps and derive the eigenvalue asymptotics of a...

متن کامل

Eigenvalue Asymptotics for Sturm–liouville Operators with Singular Potentials

We derive eigenvalue asymptotics for Sturm–Liouville operators with singular complex-valued potentials from the space W 2 (0, 1), α ∈ [0, 1], and Dirichlet or Neumann–Dirichlet boundary conditions. We also give application of the obtained results to the inverse spectral problem of recovering the potential by these two spectra.

متن کامل

Mathematical framework for detection and quantification of nonclassical correlations

Existing measures of bipartite nonclassical correlations that are typically characterized by nonvanishing nonlocalizable information under the zero-way CLOCC protocol are expensive in the computational cost. We define and evaluate economical measures on the basis of a new class of maps, eigenvalue-preserving-but-not-completelyeigenvalue-preserving (EnCE) maps. The class is in analogy to the cla...

متن کامل

Limitation for linear maps in a class for detection and quantification of bipartite nonclassical correlation

The eigenvalue-preserving-but-not-completely-eigenvalue-preserving (EnCE) maps were previously introduced for the purpose of detection and quantification of nonclassical correlation, employing the paradigm where nonvanishing quantum discord implies the existence of nonclassical correlation. It is known that only the matrix transposition is nontrivial among Hermiticity-preserving (HP) linear EnC...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998